Automated Data Wrangling

An illustration from the Frog and Toad children's books, where Frog and Toat are eating cookies. The caption has been altered to say "We must stop data cleaning!" cried Toad as he continued to clean the data.
Frog and Toad are Data Wranglers

We work with a lot of messy public data. In theory it’s already “structured” and published in machine readable forms like Microsoft Excel spreadsheets, poorly designed databases, and CSV files with no associated schema. In practice it ranges from almost unstructured to… almost structured. Someone working on one of our take-home questions for the data wrangler & analyst position recently noted of the FERC Form 1: “This database is not really a database – more like a bespoke digitization of a paper form that happened to be built using a database.” And I mean, yeah. Pretty much. The more messy datasets I look at, the more I’ve started to question Hadley Wickham’s famous Tolstoy quip about the uniqueness of messy data. There’s a taxonomy of different kinds of messes that go well beyond what you can easily fix with a few nifty dataframe manipulations. It seems like we should be able to develop higher level, more general tools for doing automated data wrangling. Given how much time highly skilled people pour into this kind of computational toil, it seems like it would be very worthwhile.

Like families, tidy datasets are all alike but every messy dataset is messy in its own way.

Hadley Wickham, paraphrasing Leo Tolstoy in Tidy Data